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ABSTRACT 

T h e  symplec t ic  group Sp(n,  F )  over a local field F (other  t h a n  C) has  a 

un ique  non-tr ivial  twofold central  extension.  T h e  inclusion of {=[=1} into 

the  circle C 1 induces  an extens ion 

1 ----* C 1 ----* Mp(n ,  F )  ~ Sp(n,  F )  ----* 1. 

In th is  paper ,  an  explicit  spl i t t ing of the  restr ic t ion of this  ex tens ion  to 

a dual  reduct ive  pair (G, H)  in Sp(n,  F )  is given in all cases in which it 

exists.  Such an explicit  spl i t t ing is of ten an essential  technical  ingredient  

in the  s t u d y  of the  local t h e t a  correspondence  for the  dual  pair [4]. 

In troduct ion  

The cocycle of the metaplectic cover of the symplectic group over a local field has 

been well studied and has a nice expression in terms of the Leray invariant [8], [6]. 

On the other hand, in many applications it is the restriction of the metaplectic 

cover to a dual reductive pair which is of primary concern. While it is known 

that  this restriction frequently splits [5], Chapt. 3., a nice explicit formula for the 

splitting does not seem to occur in the literature. In this strictly utilitarian note 

we give such a splitting in all cases in which it exists. 

More precisely, suppose that  F is complete local field of characteristic zero. 

Let W denote a symplectic vector space of dimension 2n over F,  and let Sp(W) 
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be the corresponding symplectic group of rank n over F.  

acting on W on the right. 

If F # C, the group Sp(W) has a non-trivial 2-fold cover 

We view Sp(W) as 

(0.1) 1 ' ~2 , S-p(W) , Sp(W) ,1,  

where #~ denotes the r- th roots of unity. For many purposes it is more convenient 

to work with the associated Cl-extension 

(0.2) 1 ~ C 1 ~ Mp(W) , Sp(W) , 1, 

obtained by including/~2 into C 1. It should also be noted that the C 1-extension 

used here splits over certain subgroups for which the corresponding #2 extension 

does not split. 

A cocycle for this extension has a very simple expression [8], [6], [5] in terms 

of the Leray invariant. Let f~ = ~(W) be the space of n planes in W which are 

isotropic for (,). The symplectic group acts transitively on ~2 and on the set of 

pairs U1, U2 E ~ which are transverse (U1 r3 U2 = 0). To a given ordered triple 

U1, U2, U3 E f~ which are pairwise transverse there is associated an n-dimensional 

F vector space L = L(U1, U2, U3) with a symmetric, non-degenerate, F-bilinear 

form ( , )L- The isometry class of this form is uniquely defined and is the Leray 

invariant of the triple. 

The Leray invariant depends only on the Sp(W) orbit of such a pairwise trans- 

verse triple and the orbits of Sp(W) on the set of such triples are characterized 

by their Leray invariant. If U1, U2, U3 E f~ is an arbitrary triple, let 

(0.3) R = (U1 n U:) + (U2 n Ua) + (U3 n U1) 

and let WR = R ' / R  with the natural symplectic form induced by (,). For any 

U Ef l ,  let UR be the image of UAR" in WR. Then the triple Ul,m U2,R, U3,R E 

fl(WR) is pairwise transverse and one defines 

(0.4) L(U1, U2, U3): = L(U1,R, U2,m U3,R), 

so that  L(U1, U2, U3) is an isometry class of symmetric bilinear forms of dimen- 

sion n - r,where r = dimR. Again the Sp(W) orbit of the triple U1, U2, U3 

is determined by the dimensions of their mutual intersections and their Leray 
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invariant [8], Theorem 2.11. All of these facts are very nicely described in Rao's 

paper [8]. 

Finally, we fix a non-degenerate additive character ¢ of F,  and, for any (non- 

degenerate) symmetric F-bilinear form L, we let 7F(¢ o L) E #8 denote the Weft 

invariant of the character of second degree x ~ ¢( (x ,  X)L). 

Remark: At this point there is a choice to be made. If ( , )L: L x L , F is a 

symmetric bilinear form, we could have taken 

1 
(0.5) L[x] = ~(x, X)L 

as the associated quadratic form, following a classical convention, as, say, in 

Cassels [2], p .7, in introducing the factor of 1 For example, if L = F with 

(x, y) = xy, then L[x] = lx2. On the other hand, in our definition of 7F(¢oL),  we 

have followed Rao's convention in taking the quadratic form x ~-* (x, X)L = 2L[x]. 

This was done to maintain consistency with his formulas. The price, however, is 

that  in many places it is the Weil index 7(½¢ o L) which occurs, i.e., the additive 

character ¢ is replaced by 7/ = ½¢, ~](x) = ¢(½x). On the positive side, the 

matrix ((xi, xj))  of inner products for a basis {xi} for L is the matrix both for 

the inner product and for the quadratic form x ~ (x, X)L which is used in the 

calculation of 7(¢ o L). 

The result of Rao and Perrin is the following: 

THEOREM (([8], [6])): For any fixed Y E •(W) there is an isomorphism 

Mp(W) -~ Sp(W) × C 1 

where 

(gl, ~l)(g2, ~2) ---- (glg2, ([lt[2cy(gl, g2)) 

with cocycle cv given by 

cv(gl, 92) = 7 r (2¢  o L(V, Yg;1, Yg~)). 

Remark: The second statement here should be compared with Theorem 4.1 (5), 

p. 358 of [8]. 

Since the Weil invariant is identically 1 when F = C, we will exclude this case 

from now on. 
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Our goal is to describe the restriction of the metaplectic cover to certain dual 

reductive pairs (G, H)  in Sp(W). These are defined as follows: Let D be a division 

algebra whose center E contains F,  and let 7-: D ~ D be an involution of D 

(anti-automorphism of D of order 2). Assume that  F is the set of fixed points of 

the restriction of 7- to E.  The possibilities for (D, E,  F, T) are 

1. D = E = F a n d ~ - = i d .  

2. D is the unique division quaternion algebra over E = F and T is the main 

involution of D. 

3. D = E is a quadratic extension of F and T is the non-trivial Galois auto- 

morphism. 

Fix ~ = ±1. Let W _ D 2n (row vectors) be a left vector space over D of 

dimension 2n with e-skew hermitian form 

(0.6) <(xl,  (x: ,  y2)) = x l .  ty l  _ tx , 

and let 

(0.7) G = {g • GL2n(D) I (wlg, w2g) -~ (Wl,W2), VWl,W2 • W }, 

be the isometry group of W. Note tha t  W has a complete polarization (decom- 

position as a direct sum of a pair of maximal isotropic subspaces) W = X + Y 

where X = {(x,0)l x • D n} and Y = {(0, y)l y • On}. Let V, ( , ) be a right 

D vector space of dimension m with a non-degenerate e-Hermitian form and let 

H denote the isometry group of V. If we let d = d ime  D and let tr: D , F be 

the reduced trace, then 

(0.8) W = V ® D W ,  ( ( , ) ) =  ~ . t r ( ( ,  ) ® ( ,  ) ' ) ,  

where 

1 in case 1 

(0.9) ~ = ½ in cases 2 and 3, 

is a symplectic vector space over F of dimension 2nmd. 

homomorphism 

There is a natural 

(0.10) t: G x H * Sp(W) 
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and (G, H) is a dual reductive pair of type I in Sp(W). It is not the most 

general such pair, since we have assumed that W is even dimensional over D and 

split i.e., admits a complete polarization. There are 6 cases, 1,, 2, and 3,. Of 

course, Hermitian and skew-Hermitian forms may be identified in case 3, but this 

identification is not canonical, so we prefer to avoid it. 

Let ~2(W) denote the space of D subspaces U C W, with dimD U = n which 

are isotropic for (,). Again G acts transitively on ~ (W)  and on the set of pairs 

U1 U2 E ~(W) which are transverse. Moreover, given a triple UI, U2, and U3 E 

fl(W), the definition of the Leray invariant can be carried over without essential 

change - see §1- to yield an invariant LD(U1, U2, U3) which is an e-Hermitian form 

over D of rank n - r ( r = dimD R, as before) and which is uniquely determined 

up to isometry. Here, to be precise, we should view L = LD(U1, U2, U3) as a left 

D vector space with an e-Hermitian form ( , )L: L x L ~ D. Moreover, for a 

fixed V as above, there is a map 

e-Hermitian forms over D } 
(0.11) /~y: ~ of rank k 

given by 

(0.12) L v--, V ~D L 

Finally, there is a natural map 

symmetric forms over F 
> ~ of rank mkd J 

(, )gv(L)=t~'tr((, )V®(, )rL). 

(0.13) Rv: ~2(W) * •(W) 

given by 

(0.14) RvU = V @D V. 

Let *v: G , Sp(W) and *w: H ---* Sp(W) denote the restrictions of ~ to 

G x 1 and 1 x H respectively. Our first observation is the following: 

PROPOSITION 0.1: 

(i) Rv is compatible with the Leray invariant, i.e., 

/Jv( LD(U1, 5'2, U3) ) = L(RvU1, RvU~, RvU3). 



366 S . S .  K U D L A  Isr. J. M a t h  

Thus the diagram 

n(w)  , n(w)  

" v .  

commutes, where ,,~ denotes equivalence up to isometry. 

(ii) In particular, for any Y E S2(W), let Y = R v Y .  Then 

cv(~v(gl), ~v(g2)) = ~F( 1¢  o ~v(LD(Y, yg~1, Vgl)) ). 

Thus the Leray invariant and the Perrin-Rao cocycle are 'natural'. 

On the other hand, the isometry classes of symmetric bilinear forms over F are 

characterized by their dimension, determinant and Hasse invariant in the non- 

archimedean case, and by their dimension and signature in archimedean case [10]. 

A similar, and often simpler, set of invariants characterize the isometry classes 

of e-Hermitian forms over D, [7], [9], and the map/zy has an explicit description 

in terms of these invariants (Proposition 2.1). Moreover, the Weil index 7(~/o L) 

of an arbitrary quadratic form L depends only on the isometry class of L and is 

determined in an explicit way by the invariants of L (Lemma 3.4). Using this 

description and that of/~v, we calculate the cocycle cv(~v(gl), ~v(g2)). The fact 

that the invariants of LD are usually rather simple allows us to find (Theorem 

3.1) an explicit and relatively simple function ~v whose coboundary is cv, except, 

of course, in case 1+ with m odd, when the cocycle remains nontrivial. 

In section 4, we consider the case in which the space W is not split. Here a 

doubling procedure suggested by Michael Harris is used to reduce this case to 

the split case and to give "explicit" splittings (Propositions 4.1, 4.6, and 4.8). 

Finally, in the last section, we again assume that W is split, and we describe the 

operators which give the action of G(W) in the standard SchrSdinger model of 

the Weil representation. 

Section 1. The Leray invariant LD and proof of Proposition 0.1 

Section 2. Classification of elements of Herren(D) and the map/~v 

Section 3. Explicit trivializations 

Section 4. Other unitary groups, some examples 

Section 5. SchrSdinger models 



Vol. 87, 1994 METAPLECTIC COVERS 367 

ACKNOWLEDGEMENT: I would like to thank J. Adams for his patient and de- 

tailed reading of a rough first version of this paper. His comments greatly im- 

proved the exposition. I would also like to thank M. Harris for his, as always, 

fruitful suggestion concerning the splitting in the case of arbitrary unitary groups. 

1. The Leray invar ian t  LD 

In this section we sketch the definition of the generalized Leray invariant LD. In 

fact the proofs in Rao's paper [8] go over with only minor changes, and so we 

simply will recall, usually without proof, some of the main structural facts which 

must be checked. 

1.1 Let W, (,) be a split e-skew Hermitian space over D and define G, ~(W),  

etc. as in the introduction. For any U E ~(W), let Pu C G be the stabilizer ot 

U and let Nu = {g E PuI glv = id} be its unipotent radical. 

Given a triple U1, U2, U3 E ~(W),  there exists an element g E Nu1 such that 

U2g = U3 if and only if U2 N [71 = [73 n U1, and this element is unique if U2 and 

U3 are both transverse to U1. This is Lemma 2.3 in [8]. Now suppose that U1, 

U2,and U3 are pairwise transverse. Let g E Nut be the unique element such that 

U2g = U3, and write 

(1.1) g =  (10 P )  p EHOmD(U2, U1) 

with respect to the complete polarization W -- U2 +/]1. Then let 

LD = LD(U1, U2, U3) = U2 

and for x and y E LD, let 

(1.2)  

Note that  

(1.3) 

(z ,  u )L°  = (~, up) = (x,  ug) .  

(x ,  y ) L °  = (x,  up) 

= (x,  ug - u) 

= (zg ,  (ug - u )g)  

= (xg ,  ug - u) 

= - ( x g ,  u) 

= ~(u, xg)  ~ 

= ~(u, ~ ) L -  
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Thus LD, ( , )LD is an e-Hermitian space over D. It is non-degenerate: 

(x,y)LD = (x ,y"  g) = O, VX E LD =- U2 
(1.4) 

~-~  y . g e U~ N U3 = U2 n U3 : 0, 

since U2 and Us are transverse. 

LEMMA 1.1: Given ordered triples U1, U~,U3 and ~l,lr! ~2,/'T! ~3/rl E ~"~(W), each of 

which is pairwise transverse, there exists an h E G such that U~h = U" if  and 

only i f  LD(U1, U2, U3) and LD(U~, U~, U~) are isometric. 

Proof." If an isometry 

(1.5) = ~ LD(U1, U~, U~) = U~ ff : LD(U1, V2, V3) /-]2 , ' ' ' 

exists, then there is a unique extension of a to an element a E G such that  

Ula = U~. Let 9 E Nu1 and g' E N v  I be the elements used in defining LD, i.e., 

such that  U2g = U3 and U'gg' = U~. For x and y E U2, x .  g .  a is an arbitrary 

element of U3a and y .  a .  g' is a arbitrary element of U~. We compute: 

( x . g . a , y . a . g * )  = ((x + x . p ) . a ,  ya +yap ' )  

(1 .6 )  

= (x~, y~) + (x~, ~ p ' )  + (~p~, ~ )  + (~p~, :~p') 

= o + <~, up) + (xp, ~) + o 

-~ (x ,  Y)LD -- ( (Y ,  x[-)> r 

= (x ,  Y)LD -- ~(Y' X)~ D = O. 

Thus Usa C (U~) ± = U~, and hence the two must coincide. The other assertion 

is easy. | 

Rao's proof that  LD(U1, U2, U3) is alternating for permutations of the Ui's 

carries over without change. 

For an arbitrary triple U1,/-72, U3 E ~ (W)  we have 

LEMMA 1.2 (Rao's 5-term Lemma): There exists an orthogonal decomposition 

w = ~ + ~ + ~ + ~ + ~  

with Wi, (,)]w~ non-degenerate and split, such that 

u~ = Wo n U~ + w~ n u~ + w2 n u~ + ws n u~ + w4 n V~ 
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for i : 1, 2, 3 and 

(o) 
(1) 
(2) 
(3) 

and 

Vl n Wo = U2 n Wo = V3 n Wo 

U 1 n W 1 is  t r a n s v e r s e  to U2 n W 1 = U 3 I~ W 1 

U2 n W2 is transverse to U3 n W2 = U1 n W2 

U3 n W3 is transverse to U1 n W3 = U2 n W3 

(4) U1 n W4, U2 n W4, U3 n W4 are pairwise transverse. 

For later convenience we set 2ri = dimD Wi. 

Now, as in Rao's case, set 

(1.7) R = Vl n V2 + U2 n U3 + V3 n Vl 

and let WR = R Z / R .  Let Ui,R denote the image of Ui n R ± in WE. Then define 

(1.S) LD(U1, V2, U3) = LD(UI,a, U2,R, U3,R). 

Note that,  if r = dimD R, then dimD WR = 2n - 2r and LD(U1, U2, U3) is an 

e-Hermitian space over D of dimension ~ = n - r. It is then easily checked using 

the five term Lemma that  this Leray invariant together with the dimensions of 

the mutual intersections characterizes the G orbit of the triple. 

Remark: Note that,  while the above facts are almost entirely trivial extensions 

of the corresponding assertions in Rao, there are certain differences which must 

be kept in mind. For example, not all non-degenerate subspaces of W need be 

split in general. Moreover, in case 1_, i.e., for W with a split symmetric bilinear 

form over F with dimE W = 2n and n odd, no pairwise transverse triples U1, U2, 

U3 E ~ ( W )  exist (!) (the Leray invariant must be a non-degenerate alternating 

form of dimension n in this case) and the 'reduction' step is always necessary. 

1.2 The facts about G orbits in f~(W) just described yield structural informa- 
l tion about G. To make this precise, again following Rao, let e l , . . . ,  en, e~ , . . . ,  en 

be the D basis for W which gives the isomorphism W ~_ D 2n of the introduction, 

and define T E G by ei • V = --ee~ and e~ • ~- = ei for all i. Then T 2 ---- --{[" 12n. 

For any subset S C {1 , . . . ,  n}, define TS E G by 

e i . r  if i E S (1.9) = 

ei if i ~ S 



370 S . S .  K U D L A  Isr. J. M a t h  

{' , e i . r  i f i E S  
(1.10) e i • rs  = , if i ~ S. 

e i 

Then it is easily checked that,  for Y = spanD{e~, . . . ,  e ' }  and for P = Py  and 

N = N y ,  

?I  

(1.11) G = H P T j P  
j - -0  

where rj = r{1,...,j}, and P T s P  = PT jP  if and only if ISI = j .  If we write 

with respect to the complete polarization W = X + Y  defined in the introduction, 

then ker(c) = Y n y g - 1 ,  and g E P r j P  where j = n - dimD ker(e). 

Next, using the five term Lemma, we obtain: 

(Rao): Given gl and g2 E G, there exist p, Pl P2 E P such PROPOSITION 1.3 

that 

with 

gl --- p l~lP -1, g2 = pt~2p2 

~1 = diag[1, T, 1, T, rn(p)] 

~2 = diag[1, T, r,  1, r]. 

Here the block sizes in ~1 and ~2 are given by 2ro , . . . ,  2r4, with 2rj = dimD Wj, 

j = 0, 1, 2, 3, 4 where W = Wo + W1 + . . .  + W4 is the five term decomposition 

associated to the triple Y, y g ~ l , y g l .  Moreover, p = ep ~ is a nondegenerate 

e-Hermitian matr ix  in the isometry class of  LD(Y, Yg21,  Ygt ) .  

Here, if p E Herm~(D) we write 

( ) (° (1.12) n ( p ) =  in p and r =  
0 In ' 1, 

and similarly in the smaller blocks. 

We will need to carry over Rao's function x(g). If g = plrsp2 E P r s P ,  then 

(1.13) PlP2]Y E G L D ( Y )  ~ GLn(D) ,  
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and we let 

(1.14) x(g)  = v(plp21Y) • E x 

be the reduced norm of this element.  To de termine  the extent  to which x(g)  

depends  on the  choice of Pl,  P2 and S we need the  following (which is just  a 

t rans la t ion  of Rao ' s  consistency L e m m a  3.5 to  our  context) :  

LEMMA 1.4: Suppose that  Pl and P2 • P and  g = c 

PlgP2 = g. Let  ~" = Y/ker(c) .  Then  Pl[Y preserves ker(c) = Y n y g - 1  and, i f  pl  

denotes the endomorphism o f  ~" induced by Px , then 

(de t (px)) (de t (p l ) )  ~ = det(plp2]y) .  

Proo~ As in Rao we can reduce to the case g -- rs  and we write everyth ing 

with  respect  to the decomposi t ion  W = X s ,  + X s  + Ys  + ]Is,, e.g., 

0 - - c  
(1.15) rs  = 1 0 " 

1 

Then  plrsP2 = TS implies t ha t  Pl and P2 • P N Pgrs .  Since Y r s  = X s  + Ys ' ,  

we have Ys'  = Y r s  n Y is preserved by Pl and P2- This  shows tha t  Pl and P2 

preserve the flag W D X s  + Y D Y D Ys,,  and hence are upper  t r iangular .  

Wri te  Pl = (aij)  and p21 = (bij). The  condit ion p i r s  = r spg  1 then  implies t ha t  

a 2 1 = a a a = 0 ,  b 2 1 = b 4 3 = 0 a n d  

(1.16) a l l  = b n ,  a22 =b33,  

and a 2 3 = 0 .  Thus  

(1.17) 

a 3 3  ---- b22,  a 4 4  - -  b44,  

det (pip2 IY) = det (pl [Y) det(p211Y)-1 

= det(a33) det(aaa)  det(b33) -1 det(b44) -1 

= det(a33) det(a22) -1 .  

But  now, on the W s  = X s  + Ys  block, i.e., on X s  + Y / Y s ' ,  Pl has ma t r i x  

0) 
a 3 3  0 a 3 3  " 

/ t a r  ~-1 and det(a22) -1 = det(a33) ~. But  finally, Y N Y v ~  1 = Ys, so t ha t  a 2 2  ~- ~ 331 , 

so tha t  Y = Y / Y s '  ~- Ys,  and de t (p l )  = det(a33). This  proves the relat ion we 

want.  | 
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COROLLARY 1.5: The quantity x(g) is a well defined element of F X / F  x,2 in 

cases 1 and 2, and of EX / N E  x in case 3. 

Note that  the quantity x(g) actually depends on the choice of standard basis 
! 

e l ,  • • • ,  e n .  

Finally, the following relation, which occurs in Rao's  paper,  will be of funda- 

mental  importance: 

PROPOSITION 1.6: Suppose that  gl and g2 E G with gl E PTj lP,  g2 E Prj2P 

and gig2 E PTjP.  Let p = LD(Y, Yg21, Yg l )  be the associated Leray invariant 

and set ~ = dimD LD(Y, Yg21, Yg l )  = dimD p. Define t by the relation 

Then 

2t ---- j l  + J2 -- J -- ~- 

x(glg2) = x(gl)x(g2)(-e)  t det(p) 

where det(p) is to be interpreted as the reduced norm o[ p E M~( D ) in case 2. 

Proo~ Consider the decompositions gl = P1~lp-1,  and g2 -- P~2P2 as in Propo- 

sition 1.3 and note that  

(1.19) 

We have 

(1.20) 

N o w  

(1.21) 

and 

(1.22) 

j l  = rl + r3 + 

j2 = rl + r2 + e 

j - - r 2 + r 3 + g .  

X(gl)----X(pl)x(p) -1 

X(g ) 

X(g192) = X(pl)X( I 2)X(p2 ). 

a11¢2 = diag[1, -e ,  r, r, rn(p)r] 
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Note that  the block sizes in ~i are ro,rl,r2, r3, and g in our present notation. 

Since 

(t.23) j l  -1- j2  -- j = 2 r t  + g 

we conclude that  r l  --- t and that  x (a ta2)  = ( - e )  ~ det p, as required. | 

1.3 

Proof of Proposition 0.1: We now fix V, W, W etc. as in the introduction. 

For a triple U1,U2,U3 E ~2(W), which is pairwise transverse, let RvU1, RvU2, 

RvUa E f/(W) be the corresponding triple. Let LD = LD(U1, U2, Ua) and L = 

L(RvU1, RvU2, RvU3) be the Leray invariants. Note that  if g E Nux is the 

unique element such that  U2g = Ua, then ev(g) E Nnvu~ is likewise the unique 

element such that  RvU~ev(g) = RvU3. Then, for x and y E [-72 and v and w E V, 

we have 

(1.24) 

(v ® x, w ® u)L = ((v ® x, w ® (ua))) 

= ~. t r ( ( , ,  ~)(x,  y g y )  

= ~ .  tr((~, ~ ) (x ,  y ) ~ . )  

= ( V ~ X , W ~ Y ) I ~ v ( L D ) .  

This proves (i) of Proposition 0.1 in the pairwise transverse case. In general, 

it is clear that  the 'reduction'  procedure is compatible with Rv, and so (i) of 

Proposition 0.1 is proved. Par t  (ii) then follows immediately. | 

2. C la s s i f i ca t i on  o f  e -Hermi t ian  forms  over  D and  t h e  m a p  # v  

In this section we first recall the invariants which characterize an ~-Hermitian 

form over D in each of the cases 1~, 2~ and 3~. Good references for this materiM 

are [7] and [9]. We then describe the map #v:  Herren(D) ~ Sym(F)  in terms 

of these invariants and those of V. 

2.1 Let L be an c-Hermitian space over D. Recall that  in the three cases we 

have: 1. D = E = F,  r = id, 2. D quaternion algebra over E = F,  r = main 

involution, and 3. D = E,  quadratic extension of F,  r the non-trivial Galois 

automorphism. Then invariants which characterize the isometry class of L are 

given by the following table: 



374 S . S .  K U D L A  Isr. J. M a t h  

Table 2.1 

Invariants of e-Hermitian forms ( F non-archimedean) 

Case invariants 

1+ L symmetric bilinear dime L 

1_ L symplectic dime L 

2+ L quaternion Hermitian dimD L 

2_ L quaternion skew-Hermitian dimDL 

3+ L Hermitian dime L 

3_ L skew-Hermitian dime L 

detL E F X / F  x'2 hE(L) 

detL E F X / F  x'2 

detL E F X / N E  x 
det L E (5)dim~ LFX/NEX 

Here, for example, in case 1+ we choose a basis {xi} for the F vector space L 

such that the matrix of inner products ((xi, xj)) = diag(al , . . . ,  at) is diagonal. 

Then 

(2.1) get(L) = det((xi, xj)) = I I  a~, 
i 

and the Hasse invariant is given by 

(2.2) hE(L) = y[(a,, aj)E. 

In case 2_, if Q E Mn(D) is a skew-Hermitian matrix representing L, det L means 

the reduced norm of Q. In case 3, E = F(5) where A = 5 2 e F x. 

Table 2.2 

Invariants of e-Hermitian forms ( F = R) 

Case invariants 

1+ L symmetric bilinear dimF L sig L 

1_ L symplectic dime L 

2+ L quaternion Hermitian dimDL sig L 

2_ L quaternion skew-Hermitian dimDL 

3+ L Hermitian dime L sig L 

3_ L skew-Hermitian dime L sig L 

Here sig L denotes the signature of L. In case 3_, this is the usual signature 

of the Hermitian space obtained by scaling the skew Hermitian form on L by ~f. 

Using these facts, we can describe the map #v explicitly. 
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PROPOSITION 2 .1 :  Suppose that F is non-archimedean and let V be a fixed e- 

Hermitian form with ra = dimD V. Then the invariants o[ #v (L) ,  the image of 

L E Herren(D) under the map 

#v: Herm~(D) ~ Symmdt(F),  L~-* V ® D L  

are given as follows. 

Case  1+: dim #v (L )  = me, det(#v(L))  = det(V) ~ det(L) m and 

hF(pv (L) )  = hF(V) thF(L)m(de t (V) ,  det(L))~ ~-1 

x ( -1 ,de t (V) )F  2 ( - 1 , d e t ( / ) )  F . 

Case  1_: d i m p v ( L )  = me, de t (pv(L) )  = 1, hF(Pv(L) )  = 1. 

Case  2+: d im#v(L)  = 4me, de t (pv(L))  = 1, 

hF(Pv(L) )  = hE(D) me = ( - 1 ) m r ( - 1 , - 1 ) ~  ~. 

Case  2_: d im#v(L)  = 4me, de t (#y(L))  = 1, 

hF(#y (L) )  = ( -1 )me( -1 ,  det(V))~ ( -1 ,  det(L))~ (det(V), det(L))F. 

Case  3+: d im#v(L)  = 2me, det (#y(L))  = ( - A )  me, and 

h f ( # v ( L ) )  = ( -1 ,  - A ) F  t~t;1)+t..~.~-l) (A, det(V))~ (A, det(L))~.  

Case  3_: d im#v(L)  = 2me, de t (#y(L))  = ( - A )  mr, and 

_ . .ml~l~l )  + t  m ~  -1) 
hF(#v (L) )  = ( -1 ,  --/X)F (A, 5 m det(V))~ (A, 5 ~ det(L))~.  

Recall that, in case 3, D = E = F(6), with 5 2 = A.  The notational conventions 

about determinants are explained in the proof. 

The analogous result in the axchimedean case is very easy: 

PROPOSITION 2 . 2 :  Suppose that F = R. In cases 1+, 2+, and 3+ let sig(V) = 

(p,q) where p + q -- dimD(V) and let sig(L) = (r,s) where r + s = dimD(L). 

In case 3_, fix a choice of 6 and let (p,q) (resp. (r ,s))  be the signature of the 

Hermitian space obtained by multiplying the form on V (resp. L)  by 5. Then 

the invariants of the form # v (  L ) are given by: 
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Case 1+: 

Case  1_: 

Case  2+: 

Case 2_: 

Case 3+: 

Case 3_ : 

dim py  (L) = me and sig(#v (L)) = (pr + qs, ps + qr) 

d im p v(L)  = me and sig(py(L)) = (-5-,'~e ~ )  

d i m l y ( L )  -- 4m~ and sig(#v(L)) = (4(pr q- qs), 4(ps q- qr ) ) 

dim/~v (L) = 4mg and sig(#v (L)) = (2ml, 2m~) 

d i m p v ( L )  = 2m~ and sig(~v(L)) -- (2(pr + qs), 2(ps + qr)) 

dim # v ( L )  = 2m~ and sig(#v(L)) = (2(pr + qs), 2(ps + qr)) 

Note that in this last case the result is independent of the choice of ~. 

The proofs of these results are an easy case by case calculation, which will 

occupy the remainder of this section. 

Proof of Proposition 2.1: 

CASE 1+: It is clear that  d imFV ®F L -- me and det(V ®F L) = det(V) e 

det(L) m. On the other hand, choosing bases which diagonalize both forms and 

calculating, we obtain: 

(2.3) hF(V  ®F L) = hF(V)eh f (L ) '~ (de t (Y ) , de t (L ) )~  e-1 

x ( - 1 , d e t ( V ) ) F  2 ( -1 ,de t (L ) )  F 2 . 

CASE 1_: In this case it is clear that  V ®F L is a split quadratic space of 

dimension mL Thus it has deteminant ( - 1 )  me = 1 and Hasse invariant 

, , , . l ( , ~ t  - 1 ) 

(--1,--1)F 2 = 1, 

since m and ~ are both even. 

CASE 2+: Now dimF(V ®D L) = 4mL There exists a D-basis for V for which 

the form has matrix d iag[a l , . . . ,  am] with ai E F x, Thus 

(2.4) V Go  L -~ al • L + . - -  + am • L. 

Also there exists a D-basis for L for which the form has matrix d iag[bl , . . . ,  be] 

and hence 

(2.5) L - ~ b l - D + . . . + b ~ - D  

where D has the standard Hermitian form (x ,y)D : xy ~. The invariants of 

the associated quadratic form (x, y) = l t r (x ,y )D  are dimF(D) = 4, det(D) = 

1( mod F x,2) and hE(D) = --(--1,--1)F. Note that  hF(b.  D) = hE(D),  and 

hE(L) = hE(D) e. Thus we obtain det(V ®D L) = (det(V))4e(det(L)) 4~ = 1 and 

h v ( Y  Go L) = hE(D) me. 
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CASE 2_: In this case we may choose D-bases for V and L for which the skew- 

Hermitian forms have matrices d iag[a l , . . ,  am] and diag[B1,...,/3e] respectively. 

Here ai and f~j E D × satisfy a~ = - a i  and f~ = -/3j. For a of this type, let 

D~ denote the 1-dimensional left D vector space with skew Hermitian form with 

matrix a, i.e., ( x, Y)Da -~ xaY r. Similarly, let ~D denote the 1-dimensional right 

D vector space with skew Hermitian form with matrix a, i.e., (x, Y)aD = xraY • 

Then aD®D DE is a 4 dimensional vector space over F with symmetric F-bilinear 

form given by 

1 
x ' r  oLx  T r (2.6) ( x l ® Y l , X 2 ® Y 2 )  = ~t r ( (  1 2)(Ylf~Y2) ). 

LEMMA 2.3: Let a = y(a) and b = y(/3) be the reduced norms of a and/3. Then 

det(~D @D DE) = 1 

and 

hF(aD ®D DE) = (a, b)FhF(D). 

Using this we obtain det(V Go L)  = 1 and 

(2.7) h F ( Y  ®D L) = ( -1)m~(-1,  det(Y))~ ( -1 ,  det(L))~ (det(V), det(L))F. 

Here det(V) = v ( a l a 2 . . ,  am) if ai are as above, and similarly for det(L). 

CASE 3+: Let 6 = - 6  r be as above with A = 6 2. First we observe: 

LEMMA 2.4: H Q is an Hermitian space of dimension q over E and i f  RQ is the 

underlying 2q dimensional F vector space with quadratic form l t r (  , ), then 

det(RQ) = ( -A)q  

and 

hF(RQ)  = ( -1 ,  --A)F ~ iAl  ( A, det(Q))F. 

Now choose an E-basis for V for which the Hermitian form has matrix 

d iag[a l , . . . ,  am], 

so that 

(2.8) V ®E L _~ a l .  L + . . .  + a,~.  L. 
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Applying Lemma 2.4 and the properties of the Hasse invariant we obtain: 

(2.9) det(V ®E L) = ( -A)  m~ 

and 

(2.10) hF(V ®E L) = (-1, --A)F '~'~1) +~ ml~-l) (A, det(V))~ (A, det(L))~. 

CASE 3_: This case may be reduced to the previous by multiplying the forms 

by 6. If V' and L' are the resulting Hermitian forms, we find that det(V @E L) -- 

det(V I @E L') in F × / F  x,~, and h f ( V  @E L) = hF(Y' @E L'). Thus R v L  and 

Rv, L' are isometric as quadratic forms. The formulas of case 3+ can then be 

applied. | 

Proof of Proposition 2.2: Easy and omitted. | 

3. Explicit  trivializations 

In this section we use the results of the previous two sections to give an explicit 

trivialization of the cocycle (ty)*cv where Y • ~t(W) and ~I = R v Y  • gt(W). 

THEOREM 3.1: Let W and V be as in the introduction, with dimD V -- m. 

Fix Y E ~(W), and let Y = R v Y .  For the fixed additive character ¢, of F 
ix  let 17 = ½¢, so that ~?(x) -- (~ ), In case 3, choose a character ~ o r e  x whose 

restriction to F x is the ESm/F, where ~E/F(X) ~-- (X, A )F is the quadratic character 

for the extension E /F .  For g E PvjP C G = G(W), the j-th cell, let x(g) be as 

in (1.14) and Corollary 1.5 and let 

l yF(X(g), , )- '~ (x(g), det(V))F ~F(~ o V)-J in case 1+ 

1 in case 1_ 

(-1) mj in case 2+ 

~y(g) = ((_l)mdet(V),x(g))F(_l,det(V))JFhF(D)m j in case 2_ 

~(x(g)) ~/f(~? o RV) - j  in case 3+ 

~(x(g))~(~)JTF(y o RV') - j  in case 3_ 

Here, in case 3, RV is as in Lemma 2.4, and 

"YF(~ o RV) = ( A, det(V) )v.rv(-A, ~/)m-rF(--I , I/) -'~. 
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Also, in case 3_, V' denotes the Hermitian form obtained by scaling the skew 

Hermitian form on V by 6. Then, excluding the case I+ with m odd, 

CV(tv(gl), tv(g2) ) = ~v(g lg2)~V(g l ) - l  i3v(g2) -1. 

More precisely, in case 1+, 

cv( tv(gl) ,  ~v(g2)) t3v(glg2)-l ~v(gl)~v(g2)  

is the m- th  power of Rao's normalized (i.e., #2-valued) cocycle 

cO(gl, g2) = (x(gxg2), --X(gl)x(g2))F (X(gl), x(g2))F 

X ( - -1 , - -1 )~  =-~2 ((--1) t, det(nD))F hF(LD),  

and hence is trivial if and only if m is even. Here t is as in Proposition 1.6. Note 

that this cocycle is independent of V and ¢ and, when m is even, 

 v(o) = xv (x (o ) )  o v ) - J  

where g E PT-jP and 

Xy(X) -- (x, ( - 1 ) ~  det(V))F, 

a well known result. 

Remark: J. Adams pointed out that  the #2 valued cocycle given by Rao in his 
. . . .  z(~-D ~xqt+D 

Theorem 5.3 should have the factor ( -1 ,  - D 2 in place of ( -1 ,  - U 2 .No te  

that Rao's l is our t. Adams also pointed out an analogous error in our original 

version of Theorem 3.1! 

Remark: Case 3 was also considered by Gelbart and Rogawski [4], section 3, 

who emphasized the importance of the dependence of the splitting on the choice 

of ~. 

COROLLARY 3.2: Suppose that F = R, and let ¢(x) = e(x) = e 2*rix .  For 

g E PTjP  C G = G(W) ,  let 

1 
3~(x(g), ¢)- '~(x(g),  det V)R~/(¢ o V)-J 

1 

]3v(g) = (-1)mJ 
1 

 (i)J i-J(p-q) 

in case 1+ 

m case I_ 

m case 2+ 

m case 2_ 

m case 3+ 

m case 3_ 
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Here, in case 3, ~ is any character of C x which extends the quadratic character 

Xc(x) = sgn(x) m o f R  x • Then, excluding the case 1+ with m odd, 

CY(tV(gl), tv(g2)) : ~V(glg2)~v(gx)-l ~v(g2) -1" 

Remark: For ¢(x)  = e(x) = e 2"i=, we have 

(3.1) ~ ( a .  ¢)  --- e ( ~ ) .  

Recall that, in case 1+, if V has matrix ((x~, xj)) = d iag(a l , . . . ,  am) for some 

basis {xi}, then 

i I  ~p-q 
(3.2) -~ (¢  o V) = ")~(a1¢)-" "'YR(an¢) = e(~)  , 

since V has signature (p, q). Similarly, 

"~¢(a¢) { 1 
(3.3) 7R(a ,¢) - -  ~ -- - i  

Thus, in case 1+, we have 

(3.4) 

COROLLARY 3.3: 

if a > 0  

if a <  0. 

e(1) j(p-q) if x(g) > 0 

~v(g) = i p-q e(~) -j(p-q) if x(g) < 0 

With the notation of Theorem 3.1, and excluding the case 1+ 

with m odd, the map 

~v(g) = (~v(g), ~v(g)) 

defines a splitting of the restriction to G of the metaplectic cover: 

Up(W) ~- Sp(W) x C 1 

J l  
G , v  Sp(W) 

The following relation will be useful in the proof of Theorem 3.1 

LEMMA 3.4: If  L, ( , ) is an inner product space over F which has a basis 

for which the form has matrix diag[al , . . . ,  ae], then, for any non-trivial additive 

character ~h the Well invariant is given by 

7F(~/o L) = 7F(det(L), ~1) ~/FO1) t hFC L ). 
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This expression depends only on the isometry class of L. 

Proof." 

7F(7/o L) = ")'F(al~])... "~F(aeo) 

= 

(3.5) = "yF(det(L), ~)~[F(7~) g 1-[ (a~, aj )F 

Proof of Theorem 3.1: 

section we let 

381 

m = dimD(V) 

LD = LD(Y, yg~l ,  Ygl) for gl and g2 E G 

(3.6) g = dimD(LD) 

L = #vLD, 
1 

7 = 5 ¢  

so that,  in all cases, the cocycle in question is given by 

t*cy(gl, g2) = "yF(r/o L) 
(3.7) 

= 7F(det(L),  ~l)TF(rl)ehF(L). 

The idea now is to calculate the quantities in this last expression in terms of 

the invariants of V and of LD, as in Propositions 2.1 and 2.2. The notation of 

Propositions 1.3 and 1.6 will also be retained. 

CASE 1+: 

we have 

(3 .8)  

and 

(3 .9)  

Thus 

(3.10) = (det(V) ,det(LD))r~e(-1 ,det(V))F 2 7F(det(V),~/)e 

This is, in some ways, the most complicated case. By Proposition 1.6, 

= dim(LD) = j~ + j2 - j - 2t 

det(LD)=x(glg2)x(gl)x(g2)(-1) t. 

7F(det(L),  ~/) = (det(V), det( LD ) )~eTF( det(V) e, ll)TF( det( LD ) TM, rl) 

,,~(,~-~) 

x ( - -1 ,de t (Lo))F  ~ "rF(det(Lo),rl) m. 

i<j 

= "~F(det(L), rl)~/F(rl)ehF(L). II 

Once again we proceed case by case. As in the previous 
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and, as in section 2, 

(3.11) hF(L) = hF(V)ehF(LD)'~(det(V),det(LD))'~ ~-1 

× ( -1 ,de t (V) )F  2 (--1,det(LD))F 2 

This gives 

(3.12) ~F(~] O L) = hF(Y)thF(LD)m(det(V),  det(LD))F 

× 7F(det(V), ~/)e~/F(det(Lo), r})'~TF(r/) "~e 

Now set 

(3.13) ~o(g) = hE(Y) j (det(Y), x(g) ) f  7f(det(Y) ,  ~/)-J, 

where g E PvjP.  Then we have 

(3.14) "yF(r}o L ) = j3o(glg2)~o(g1)-1/3o(g2) -1 [hF( LD )?F(det( LD ), ~})')'F(r})~] m , 

where we have used the fact that  (det(V), (--1)t) f 'yf(det(V),  ~/)-2t = 1. Thus 

we have reduced our cocycle to an m-th  power. On the other hand, 

3T(det(LD), 7}) = (x(glg2), --(--1)tx(gl)x(g2))F ((--1)tx(gl), x(g2)) F 

(3.15) 
× ((__l)t, X(gl))F~[F(X(glg2)  ' ~)-1 ,.,/F(X(gl) ' ~) ,~F(X(g2) ' ~) .),F((__l)t W). 

and 

(3.16) "yF(f]) t ~- ~F(r])J"~F(1])J2~/F(,)-J~[( -1 ,  r]) t, 

since 7F(Z/) 2 = "/F(--1, ~})-1. Thus, if we set 

(3.17) /~y(g) = &(g)TF(x(g), ~/)-'~7F(1}) -mj,  

where g E PTjP, we have 

(3.18) 
0 L) = V(glg2) V(gl)-l v(g2) -1 

x [hF(LD) (x(gl~2), --(--1)tx(gl)x(g2))F ((--1)tx(gl), x(g2))F 

((--1)t,x(gl))F] m 

× [~/F((_l)t, W)~/(_l, ~/)t]m. 
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Here 
*(t+l) 

(3.19) ~/F((--1) t, ~?)~F(--1, ~?)t = (--1, --1)F2 

Thus, by (3.9), our cocycle is cohomologous to the m-th power of the cocycle 

(3.20) cO(gl, g2) = (x(glg2), --x(gl)x(g2))F (x(gl), x(g2))F 

x ( -1 ,  - 1 ) ~  ( ( -1)  t, det(LD))F hF(Lo) ,  

which is clearly of order 2. This is precisely Rao's normalized cocycle, and the 

derivation is substantially as in his paper. If m is even, we have given an explicit 

trivialization of "YF(Y o L), as required. 

CASE 1_: In this case, the Weil index of L is identically 1, so that there is 

nothing to do. 

CASE 2+: Now we have 

(3.21) 

?F(rl o L) = 7F(~l)4mthF(D) ~ 

= ( ' - 1 , - 1 ) ~ t ( - ( - 1 , - - 1 ) F )  "~e 

= ( -1)  mr. 

Recall that, as in section 2, hF(D) = - ( - 1 , - - 1 ) F .  We let 

(3.22) ;3v (g) ---- ( -1 )  mj 

where g E P r j P ,  and obtain 

(3.23) "yF(7/o L) = ~v(glg2)I3v(gl)-1;3w(g2) - I  

as required. 

CASE 2_: Note that we now have x(gig2) = x(gl)x(g2)det(LD), since e = -1 .  

Then 

(3.24) 
7F(r/o L) 

= ( -1 )mr ( -1 ,  det(V))~ ( -1 ,  det (nD))~ (det(Y), det(LD))FTF(rl) 4mr 

= (--1)mr(--1, det(V))~ ( ( -1)  m det(V), x(glg2)x(gl)x(g2))F (--1, --1)~ t. 

Setting 

(3.25) fly(g) -~ ( ( -1)  m det(V), x(g))F (--1, det(Y))JF hE(D) mj, 

we obtain the required trivialization. 
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CASE 3+: This is the most interesting case. We have 

(3.26) 7F(7/o L) = ( -1 ,  --A)F t~t;1) +e"~"~-l~ (A, det(U))~ (A, det(LD))~ 

× ~r((-~)  ~ ,  ~) ~F(~) 2"~. 

Now we observe that 
mr(mr-l) 

(3.27) 7F((--A) rot, n) "/F(~) 2m~ = (--1, - -A)F 2 ~,FC_A, 7/)meT(_l,  rl)-me. 

Set 

(3.28) f~0Cg) = (A, det(V))JF ~/F(--A, vl)-mJ~FC-1 , 71) mj . 

Note that 

(3.29) ~o(g) = 7F(~l o RV)  - j  

where R V  is as in Lemma 2.4. In fact, 

7F0/o  RV)  = 7FC det( RV) ,  ~l)TF(rl)2mhF( RV)  

(3.30) = 7F((--A) m, ~/)7F(--1, ~/)-m(--1, --A)F 2 C A, det(V))F 

= ~/F(--A, ~/)'nTFC-1, ~/)-m(A, det(V))F, 

as claimed. Removing the coboundary of f~0 leaves 

C3.31) 
--A)F t(t~ ~) + .~t(,~t - 1) +e ,~(,~- 1) ( A , det(LD))~ "YFC - A  , rl)-2mtTF(--1, vl) 2mr. i -I ,  

Here 
-A)~'~';'~ + ~ ' ; ' - "  +~ ~';-~ i-I ,  1. 

while the last two factors reduce to 

C3.32) 

and 

(3.33) 

Thus C3.31) becomes 

(3.34) 

7F(_A,  ~/)-2mtTr(_l, ~/)2mt = (--1, A)~ t, 

( A, detCLD))~ = C A, xCglg2)x(gl)--lxCg2)--l)~ ( -1 ,  A)~  t. 
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Note that,  in this expression, the quantity x(glg2)x(g])- lx(g2)  -1 lies in F ×, 

while the individual factors need not. Now choose a character ~ of E x which 

extends the quadratic character 

(3.35) e'~lF(X ) = (x, A)~ 

of F x . Then 

(3.36) (A, X(glg2)x(gl)- lx(g2)- l)~ : ~(X(glg2))~(x(gl))-l~(x(g2)) -1. 

Setting/Tv(g) =/7o(g) ~(x(g)),  we have 

(3.37) ?F(ll o L) =/TV(glg2)/Tv(gl)-l/Tv(g2) -1, 

as claimed! Note that  this trivialization depends on the choice of ~, and that  any 

two such choices differ by a character #~ of E × which is trivial on F x . Such a 

character corresponds to a character #5 of E 1, the subgroup of E x of elements of 

norm 1 to F. In fact we have 

LEMMA 3.5: Ill all cases, i[ g • PTjP C G : G(W),  then 

det(g) = e j x(g) 

Proo['. Since det(vj) = e j it suffices to check this identity on p • P.  But 

P =  0 a (3.38) 

with x ( p )  = det(a) • E ×, and 

(3.39) d e t ( p ) -  x(p) 

as claimed. 1 

Thus, any two choices of/7 differ by a character #5 o det, as expected by general 

principles. 

CASE 3_: As in section 2, let V ~ (resp. W ~) denote the Hermitian (resp. skew 

Hermitian) space which is obtained from V (resp. W) by scaling the form by ~. 

Note that  G = G ( W )  = G ( W ' )  = G', and that,  if gl and g2 E G have Leray 

invariant LD = LD (Y, Yg21,  Y g l ) ,  then the Leray invariant defined with respect 
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to W' is just (LD) ~, the Hermitian form obtained from LD by scaling by 6. Thus, 

RvLD = Rv,(LDy and the cocycles pulled back via tv and ev, coincide. Thus, 

if we take 

(3.40) 

the cocycle is the coboundary of f~y. There are two subtle points however. First, 

the function x~(g) here is Rao's function for G(W~); this is related to the Rao 

function for G(W) as follows. 

LEMMA 3.6: I f  g E Pr jP  C G(W), then, viewing g E G(W'), 

• ' (9 )  = ( - 6 ) - i x ( g ) .  

This relation is due to the dependence of x(g) on the choice of standard basis. 

Proof." If e l , . . . ,  e :  is the standard basis of W used to define x(g), then 

(3 .41)  el, en, --6-1e~, • • 6 -1" '  

is the corresponding standard basis for W ~. In particular, if r E G(W) and 

C E G(W ~) are defined as in section 1.2, with respect to these standard bases, 

then 

(? 0) 
~--- - - 6  7.. 

Thus x'(r) = ( -6) - '~x ' ( r  ') = ( - 6 ) - "  and similarly, x'(rs) = (-6)  -ISI. Since for 

p E P, x'(p) = x(p), the Lemma follows. | 

Thus, since ~(-66) = ~(N(6)) = 1, we may write 

(3 .43)  Z v ( g )  = ° RV')-J, 

Now the space R W  also depends on the choice of 6, but it is easily checked 

that  the quantity ~(6)mTfO? o RV~) -1 does not. This completes the proof of 

Theorem 3.1. | 

Proof of Corollary 3.2: When F = ~ a slightly more direct proof of Theorem 3.1 

can be given as follows. Recall that,  if L is a diagonal quadratic form, then 

(3.44) ")i~(~ o L) = 'TR(al~)""" "~(an~7) 
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and thus, if L has signature (P, Q), we have 

(3.45) ~ ( y  o L) = 7R(~/) P-Q. 

Now let LD = LD(Y, Yg21, Ygt) and set L = Izv(LD), as before. Let g = 

dimD(LD), and let (p,q) = sig(V) and (r, s) = sig(LD), as in Proposition 2.3. 

Also let (P, Q) = sig(L). We then obtain 

(3.46) 

I p-q)(r-s) 
0 

P-Q= 4(p-q)(r-s) 
0 
2(p-q)(r-s) 
2(p-q)(r-s) 

We also recall from Proposition 1.6 that  

m case 1+ 

in case 1_ 

m case 2+ 

m case 2_ 

in case 3+ 

m case 3_. 

(3.47) det(LD) = X(~lg2)x(g l ) - lx (g2) - l ( -~ . )  t 

and 

(3.48) g = j i + j 2 -  j -  2t. 

In cases 1_ and 2_ there is nothing to prove. Note that  in cases 1+, 2+, and 3+: 

(3.49) sgn(det(LD)) = ( -1)  8, 

while in case 3_, taking ~f = i, 

(3.50) sgn(i e det(LD)) = ( -1)  s. 

Writing r - s = g - 2s and using the relations just recalled, we easily obtain: 

(3.51) : (~'~(~)Ot) j l J c j2 - j  (~(71,~7)¢~) ,÷t, 

where a = 1 in case 1+, 4 in case 2+ and 2 in case 3+. Thus, 

(3.52) [ ( -1)  m(j'+j2-j) in case 2+ 

= / 7R(-1,y)-(P-q)(J '+J2-J)(-1)"( '+0 

.}R07) (p-q)(j, +j2-j)TR (_ 1, ~/)(p-q)(s+t) 

in cases 3+ and 

in case 1+ 
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In case 2+ we are then done, taking ]3y(g) = ( -1 ) J .  In case 3+ we have 

(3.53) ( - 1 )  8+t = ( - 1 )  t det(LD) = x(g lg2)x(g l ) - lx (g2)  -1, 

while in case 3_, for 6 = i, we get 

( - 1 )  s+t = i t de t (LD) ( -1 )  t 

(3.54) --- i -Jx(glg2) iJ lx(gl) - l iJ2x(g2)  -1. 

Taking a character ~ of C x whose restriction to R x is ec')R, we let 

[ ~ ( x ( g ) ) ~ ( - 1 ,  y)(v-q)J in case 3+ 
(3.55) ~v(g) 

~(x(g))~(i)-J~/u(_l ,y)(v-q)J in case 3_. 

This is the expression claimed in Corollary 3.2. 

Finally, in case 1+ with m and hence p - q even, we have the same calculation 

as in case 3+, except that  the quantities x(g) are already in R × . Thus 

(3.56) ]3v(g) = ( x ( g ) , - 1 ) R  2 "~¢(-1, , 

will trivialize the cocycle in this case. Finally, if m is odd in case 1+, the cobound- 

ary of 

(3.57) ~v(g) = ~(x(g) ,  ~)-m(x(9), -1)~(,)-~(p-q) 

will reduce the cocycle to Rao's  c °, just as in the non-archimedean case. | 

4. O t h e r  u n i t a r y  g r o u p s ,  s o m e  e x a m p l e s  

We now consider the case in which the space W is not split, i.e., does not allow 

a decomposition as a direct sum of maximal  isotropic subspaces. In this case, a 

doubling proceedure suggested by Michael Harris provides a kind of reduction to 

the split case. The result is not quite as explicit as before, but should still be 

adequate for many purposes. 

We retain the notation of the previous sections. 

First we observe that  in case 1+, W is always split, while in case 1_, i.e., 

G = O ( W ) ,  we may as well take Y = Y®D W for some polarization V = X + Y .  

Then the image ~v(G) lies in Py and the cocycle cv is trivial on this group. Thus 
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we need only discuss cases 2± and 3+ (We now avail ourselves of the non-canonical 

identification of 3_ with 3+). 

Let ITd denote the space W with the negative - (  , ) as e-skew Hermitian form. 

The space W + lYd is then a split space. Also let W = V @D ~r, etc. We let 

G ( W )  act on W + 17V via its natural action on W extended t r iv i a l ly  on 17V. We 

thus obtain a commutative diagram: 

(4.1) 

G ( W  + ITd) ~v , Sp(W + ~?~t) 

G(W) , vx{1}  Sp(W) x Sp(W) 

where the lower horizontal arrow is given by g ~ ( iv (g) ,  1). 

Now, if Y E ~2(W + V¢) is in the image of the map R v  from ~ ( W  + 17d), an 

explicit trivialization of the cocycle t~,cy on the group G ( W  + ]7V) is given in 

Theorem 3.1 above. We write 

(4.2) tvCv* = O~v, 

where we write 

(4.3) oZ. (g l ,  g2) = Zv(9~g2)Zv(g~)-~ Zv(a2) -~ 

On the other hand, if Y~ E ~ ( W + W )  has the form Y' = ~" NW+Y' (q~ /=  Y~ +Y[,  

then the pullback of cy to the group Sp(W) x Sp(~TV) is the product of cyi on 

the first factor and cv[ on the second. The further pullback *vcy,~ is the cocycle 

whose explicit trivialization we seek. But finally, the cocycles cy and cy, are 

cohomologous on Sp(W + ~Ty), i.e., 

(4.4) cy, = cv.  0A 

for some function A: Sp(W + W) ~ C 1 . Combining these facts we obtain 

(4.5) ~vcy~ = o( i*0v) ,  o((~v o 0"~) = o(~*(0v. 4 ~)), 

as desired. This proves the known result [5]: 
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PROPOSITION 4.1: In all cases except 1+ with m = dim V odd, there is a splitting 

G(W) --~ Mp(W) of  the restriction of the metaplectic cover to G(W). 

In order to make this splitting 'explicit', we should still t ry to determine j3v 

and A as explicitly as possible on G(W) for suitable choices of Y and Y'. For 

convenience, we will only consider the 3+. The other cases can be treated simi- 

larly. 

The form ( , ) on V can be diagonalized; so we may write V = (~iV/ as an 

orthogonal direct sum of one dimensional spaces. The space W = V ®D W -- 

(~iYi ®D W : (~iWi is likewise decomposed, and if 1 t' E f~(W) is compatible with 

this decomposition, i.e., Y' = ~11'~ n W~, then the restriction to G(W) of the 

associated cocycle cy, is a product of the cocycles @cy~. Thus we may as well 

assume that  dimD V = 1. 

Let w l , . . .  ,Wn be an E-basis for W for which the skew-Hermitian form has 

matrix 

(4.6) ~fa = 5. d i ag (a l , . . . ,  an), 

with ai E F × . For g e U(W), write w .  g = (x + 6y) .  w where w is the column 

vector whose components are the wi's and x, y E Mn(F). Note that  then 

(4 .7 )  (x  +  y)at(x - = a .  

Also note that  if V = E with (vt, v2) = bv~v2 for some b E F × , then W -~ RE/FW 

with 

1 
(4.8) ( ( , ) ) =  ~b ' t rE /F( ( ,  )). 

(The factor ½ is the ~ from (0.10).) Thus, for purposes of calculation, we may as 

well assume that  b = 1, by absorbing this scalar into the ai's. Let 

(4.9) Y~ = spanF(Wl , . . . ,  Wn} E ~(W). 

We want to trivialize the pullback ~*cv~ on G(W),  following the above procedure. 

We let ~i E I~V be the corresponding basis of ITV, and we take 

(4.10) Y = spanE(Wl  -}- ~ 1 , . - .  ,Wn -}- Wn) E ~'~(W -[- ~¢'), 
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and let 

(4.11) Y = s p a n F { 5 ( W l + ~ y ) , . . . , 5 ( w , ~ + ~ n ) , w l + ~ l , . . . , w , ~ + ~ , ~ }  

be its image in ~(W + v~,). By Theorem 3.1, we know how to trivialize the 

pullback of cv to G(W + IYV). Also let 

(4.12) Y' = Y~ + ~'~ = spanF{- - (a lA) - lwl , . . . , - - (anA)- lwn ,  

- (a:5)-:~:,...,-(aJ)-:~,}. 

Here A = 5 2. Note that these maximal isotropic subspaces have the properties 

required for the doubling argument outlined above. Moreover, we have a complete 

polarization 

(4.13) W + 'V~/= Y' +Y, 

and the bases we have given comprise, together, a standard symplectic F-basis 

- - ( a l A ) - l w l , . . . , - - ( a n A ) - l w n , -  ( 4 1 ~ ) - 1 t 0 1 , . . . , - - ( a n ( ~ ) - l ~ n ,  
(4.14) 

~(Wl -t- ~.~1), • • •, 6(Wn -~-Wn),Wl -~ -~21 , . . . ,Wn  -~-i~n, 

for W + ~4. On the other hand, we take 

(4.15) (2a:5)-t(w: --  W l ) , ' ' ' ,  ( 2 a n ~ ) - - l ( W n  -- iTgn), Wl  Jr" "tTJl,. . . ,  Wn "{- "tl)n 

as our standard E-basis for W + I~. 

Now a straightforward calculation shows that the matrix for the the image of 

g = x + 5y E G(W) in G(W + ITV), for our chosen basis (4.15), is 

1 ( a - l ( g + l ) a  ( 2 5 a ) - 1 ( g - 1 ) )  eG(W+ITV),  
(4.16) h = ~ ~, (g _ 1)25a g + I 

where we abuse notation and write g for x + 6y. Thus one factor of our 'splitting' 

win be the function g ~ /~v(h)  on G(W). 

The matrix for the image of g = x + 6y E G(W) in Sp(W + "¢¢) for the basis 

(4.14) is 

(4.17) 1 0 E Sp(W + V¢). h'= | _A2y a A(x-1)a x 
\ - A ( x  - 1)a A~a 
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Note that the basis (4.14) used here is not compatible with the decomposition 

W + ~Y, and this effects the form of h'. 

Since we are interested in splitting the restriction of the cocycle cvl to G(W),  

we consider the basis 

(4.18) 6 W l ,  . . . , ~Wn,  ( A a l ) - l w l , . . . ,  ( A a n ) - l V 3 n  

for W = X~ + Y~. The image in Sp(W) of g = x + 6y E G(W)  has matrix 

(4.19) ( x A 2 a y )  
(Aa)- ly  a - l x a  

with respect to this basis. 

Next we need to relate the cocycle cv, whose pullback is explicitly split, to cv,. 

LEMMA 4.2: The 2-cocycles cv and cv, associated to any Y, Y' E ~(W+'i~') axe 

related as follows: Fix a E Sp(W + ~') such that Y~ = Ya. Then 

CY'(gl, g2) : Cy(Otgl Or-l, otg20~-l) • 

More explicitly, if  
~ ( g )  -~ C y ( ~ , g ~ - l ) c y ( g , ~ - l ) ,  

then 

Cv,(gl ,g2)=~(glg2)~(gl)- l~(g2)-lcy(gl ,g2).  

Finally, by Rao's formula for the cocycle, 

A(g) ---- 7F07 * L(Y, y tg -1 ,  y i ) )  "~F(~/o L(Y, y i ,  yg)) .  

Note that the final formula here is independent of the choice of tr. 

If we let w = r~,~ E Sp(W + W) as in (1.9)-(1.10), then, for our special choice 

of Y and Y', we have Y' = Yw and, for any h E Sp(W + (V), h -1 = w thw-1. 

Then we obtain the following. 

LEMMA 4.3: For g E U(W)  and for h' the associated matrix, given by (4.17) 

above, the function X which relates the cocycles cv and cv, is given by 

e~A(g) = 7F(~/o L(Y, Y', Yh')) • ")'F(/] O L(Y, Y', Yt h')) 

: 7F(det(L), ~/) ')'F(lr]) t hE(L) "/F(det(L'), r/) 'TF(~'I) t' hF(L'). 
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Here L = L(Y, Y', Yh') and L' = L(Y, Y~, y th ' )  have dimensions ~ and 2' respec- 

tively. 

Here we have used Lemma 3.4 to express the Weil index of the Leray invariants 

in terms of their determinant, dimension and Hasse invariant. 

Next we compute the quantities det(L),det(L'),  ~ and 2' in general. If we write 

(4.20) h , =  ( A  B ) ,  

then the dimension r of the space 

R = YNYI + y,  NYh I + Y h "  NY 
(4.21) 

= y i  N Yh I + Yh' n Y 

is given by 

(4.22) r = 2n - rk(D) + 2n - rk(C). 

Note that  the dimension of the image of the projection of Yh ~ to Y (resp. Y') is 

rk(D) (resp. to rk(C)). Thus, we have 

(4.23) e = dim(L(Y, Y', Yh')) = 2n - r. 

But rk(C) = 2rk(g - 1) and rk(D) = n + rk(x). We may argue similarly for 

L(Y, Y', y t  h'). 

LEMMA 4.4: 

and 

= dimL(Y,Y' ,Yh ' )  = 2rk(g - 1) + rk(x) - n 

2' = dim L(Y, Y', yth ' )  = rk(x) + rk(y) - n. 

Invoking Proposition 1.6, and recalling that j (w)  = 2n and x(w) = 1, we have 

LEMMA 4.5: For both L = L(Y, Y',Yh')  and L' = L(Y, Y',Yth')  the quantity t 

defined in Proposition 1.6 is n - rk(x). Also, 

det(L) = (-1)n-rk(Z)x(h' w)x(h')  -1, 

and 

det(L') = (-1)n-rk(~)x(*h' w)x(*h') -1. 

Combining ingredients, we obtain the main result of this section. 
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PROPOSITION 4.6: For a skew-Hermitian space W, (, I, with E-basis 

{ W l ,  • • • ~ W n }  

as in (4.6), let W = R E / F  W and 

1 
( ( , ) )  = 5t,'E/F((, )). 

For g = x + 5y E G(W), define 

v(w) , Sp(W) 
( x  2ay) 

g H (Aa)_ly a_lx a , 

as in (4.19), and let h • G(W 4- IV) and h' • Sp(W 4- @) be given by (4.16) and 

(4.17) respectively. Let 

Yo = spanF{Wl,..., wn} e f2(W) 

(This is Y'I above). Then 

where: 

t*cy o = 0D 

p(g) = ~(h)A(h') 

with ;3(h) =/~v(h) given by Theorem 3.1 with V = E and (x,y)  = x~y. Also, 

A(h') = "/F((--1)n-rk(~)x(h'w)x(h')-l, ~?) " "lF((--1)"-rk(~)x(th'w)x(th')-l, ~) 

X ~/F(--1, y)rk(a-1)+rk(~)-~/F(y)rk(y) hE(L) hF(L'). 

Here L and L' are as in Lemma 4.3 above. 

Now, it only remains to determine the Hasse invariants of L and L'. We will 

do this only in the simplest case n = 1. It would be interesting to find analogous 

formulas for these invariants in the general case. 

First observe that Y f f  is the two dimensional isotropic subspace spanned by 

the last two rows of h t, i.e., by the rows of (C, D) where, since n = 1, 

( - ( A 2 a ) y  ( A a ) ( x - 1 )  x 0 )  
(4.24) (C,D) = - ( A a ) ( x -  1) (Aa)y y 1 " 
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Note that, if x ¢ 0, then, setting Y "  = Y h  ~, we have R = Y N Y" = 0. Also, 

(4.25) det(C) = ( A a ) 2 N E / F ( g -  1), 

where g = x + 5y E E 1. Thus, if g ~ 1, C is invertible. The space Y h  ~ is then 

also spanned by the rows of (1, C-1D),  i.e., 

(4.26) y h , =  y ,  (lo C - ' D )  
1 ' 

so that, if g ~t 1 and x ~t 0, the Leray invariant is 

( Y . (4.27) L = L ( Y , Y ' , Y h ' )  = C - t D  = ( A a ) - I N E / F ( g - -  1) -1 1 -- X - A y  

Diagonalizing, we have 

(4.28) L = ( A a ) - I N E / F ( g  - 1) -1 (Y 

Thus, up to isometry, 

(4.29) L _~ ( 2 A a y ( 1  -- x) 
\ 

2 y - l x ~ l _ x ) )  [ ( ~  Y - l ( l l - - X ) ) ] .  

A ~ . y  ) " 

Similarly, Y "  := Y th '  is spanned by the rows of (tB, tD), i.e., by the rows of 

Thus, i f y = 0 ,  then Y" = Y, R =  Y and L ~ = 0 , w h i l e , i f y ¢ 0 , R = Y " c l Y  

is one dimensional and is spanned by the second row. In this case, f~ = 1, 

L' = ( - A a ) y - l x  and hF(L') = 1. 

This gives: 

LEMMA 4.7: In case n = 

x(i(g, 1)) = ( g -  1)Sa, 

and 

1, assume that g ~ 1 and x ~t O. Then, ~ = 2, 

det(L) = 2x(1 - x) e F X / F  ×'2, 

hF(L) -- ( -2x(1  - x), Aaxy)F.  
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Also, i f y  ~ O, then ~' = 1, 

L' = de t (L ' )  = - A a x y  E F X / F  x'2, 

and h f ( L ' )  = 1. 

Proof: We just  check the Hasse invariant of L 

hE(L) = (2Any(1 - x), A a x y ) F  

(4.30) = (2Any(1 - x ), A a x y  ) F ( - -Aaxy,  AaXy ) F 

= (--2X(1 -- X), A a x y ) F  

as claimed. II 

Combining all of this information,  we obtain 

PROPOSITION 4.8: Assume that n = 1. Then, for g ~ 1 and xy  ~ O, 

~(h) = ~(Sa(g - 1)) "yF(A, ~/). 

and 

Isr. J. Matt 

A(h') = ~/g(2Aay(1 - x), ~) ~/F(~). 

These combine to give 

~(g)  = ~(~(9 - 1)) ~F(2ay(1  - x),  ~) (A,  - 2 y ( 1  - x ) ) ~  ~r (~) .  

Proof'. Using the expression in Lemma 4.3, and the result of Lemma 4.7, 

(4.31) 
A(h') = ~F(2X(1 -- x),  ~/) "rF(T/) 2 ( -- 2X(1 -- X), Aaxy )  g "yF(--Aaxy, ~1) ~F(Y) 

= eF(2x(1  - x), ~) ~r( -1 ,  ~)-I~F(-1,  7) ~F(A~y,  ~) (-1, ~a~y) r  

× ( - 2x(1 - x), Aa~y)~ ~ ( ~ )  

= ~ ( 2 ~ a y ( 1  - ~), ~) (2x(1 - x) ,  a ~ x y ) ~  ( - 1 ,  ~ x ~ ) ~  

× ( - 2x(1 - x), / ,~xy)~ ~ ( ~ )  

= ~,g(2Aay(1 -- x), r/) ~/F(~/). 

Combinir/g this with 

~(h)  = ~ ( ~ ( g  - 1)) ~ r ( - A ,  ~ ) - 1 ~ F ( - 1 ,  ~) 

-- ~(Sa(g - 1)) 7F(A,  y), 
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from Theorem 3.1, we obtain  

#(g) = ~(Sa(g - 1)) 7F(A,  ~/) 7 F ( 2 A a y ( 1  -- x), ~/) 7F(~/) 

(4.32) 

= (A, a)F~(~f(g -- 1)) 7F(2ay(1  -- X), r/) (A, 2Aay(1  -- x)) F 7F(~l) 

= ~(6(g -- 1)) 7F(2ay(1 -- X), ~/) (A, --2y(1 -- X))F 7F(rl). II 

Next we check tha t  this indeed yields a split t ing of the restriction of the stan- 

dard cocycle for SL2(F),  [8], p. 348, to the image of U(1) _ E 1 for the embedding,  

from (4.19): 

(4.33) g = x + 6y ~-* A a ) _ l y  x " 

This verification is based on the method  of S. Brocco [1]. 

For simplicity, we suppose tha t  a , /3 ,  and 7 E E 1 with af t7  = 1, and we write 

a + 6  b + 6  c + 6  
(4.34) (~ - /3 - and 7 - 

a - 6  b - 6  c - ~ f '  

with a, b, and c E F .  In particular,  we suppose, for the moment ,  tha t  none of a ,  

/3 or 7 is equal to 1. Then,  for a = x + 6y, say, 

a 2 + A 2a 
(4.35) x -  a2----Z- ~ and Y -  a S -  A '  

and similarly for a and 7. It is easy to check tha t  the condit ion a~37 = 1 implies 

tha t  

(4.36) - A  = ab + bc + ca 

and also tha t  

(4 .37 )  

and 

= 2 

(4 .38)  = 

We must  show tha t  the quant i ty  

(4 .39)  
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coincides with the cocycle, obtained using (4.18), 

(4.40) 
c(oG ~) = \ b 2 - ~ ]  

= 7F(--2Aa-  abc) 7F(~7). 

Note that  c~/3 = 7 -1 corresponds to -c .  

Now we have, for a = x + 6y, as above, 

2A and 2 y ( 1 - x ) -  - 8 A a  = - 2 A a  m o d F  x'2. (4.41) 6(c~ - 1) = a - 6 (a 2 - A) 2 

Then 

(4.42) 
#(a)  = ( -2 ,  A)F ((a  + 6) "/F(--2Aaa, y) (A, 2Aa)F 7F(~/) 

= (A, a)F~(a + 6) 3,F(--2Aaa, r/) 7F(r/). 

It is easy to check that  

(4.43) ]A(Ot -1) --~ ]-t(Ot) -1, 

and so (4.39) becomes 

(4.44) 

#(- , /-1)#(~-1)#(3-1 ) = ( A ,  abc)p~(a + ~)-l~(b -~- ~) - l~(c  + ~)-1 

× 3,F(2Aaa, r/) 3'F(2Aab, r/) 3,F(2Aac, r/) -yF(r/) 3 

=(A,abc)F(~(a + 6)~(b+ 5)~(c + 6)) -1 

× ~F(2Aaabc, ~) ~F(-1, V)-I~F(~) 

× (2Aaa, 2A~b)F (ab, 2A~c)r 

----(A,abc)F(~(a + 6) ~(b + 6)~(c + 6)) -1 

× 7F(2Aaabc, ~7) 7F(--1, ~?)-17F(~) 

× (2Aa, --1)F(a, b)F(b, C)F(C, a)F. 

Next we apply the following identity: 

LEMMA 4.9 (S. Brocco [1]): For a ,3 ,and "1 E E 1 as above, 

~(a + ~) ~(b + 6) ¢(~ + ~) = (:,, ab~)F(-l, -ab~)~ (a, b)F (b, ~)r (~, a)F. 
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Proof." For covenience, we 

(a, b)~(b, c)~(c, a)F = (ab, c)~(a, b)~ 

= (ab, C)F(--ab, a + b)F 

= (ab, c(a + b))F(--1, a + b)F 

4.45 = ( -1 ,  ~ + b)~(-abc(~ + b), ~(~ + b) + ab)~ 

= ( -1 ,  a + b)F(-abd(a + b),--A)F 

= ( -1 ,  -abc)~(-a~,~(a + b), A)F 
= ( -1 ,  -abc)F(-abd(a + b)(b + c)(c + a), A)lz 

(by symmetry) 
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include the proof. Recall that  ( a, b ) F = (-ab, a + b ) F. 

abc ) 
=(--1,--abc)F (a 8)(b-tS)(c 61 ' A  

- -  - -  F 

= ( -1 ,  --abc)F(A, abc)F ~(x + 6)~(b + 5)~(c + 6). | 

Using this in (4.44), we obtain: 

( A, abc)F ( A, abc)F (--1, --abc)F 

× 7F(2Aaabc, rl) ~/F(--1, r/) (--1, --1)F 7F(0)(2Aa, --1)F 
(4.46) 

= ( -1 ,  2Aaabd)F yF(2Aaabc, rl) 7F(--1, rl) "¢F(r/) 

= 7F(--2Aaabc, ~l) 7F(rl)! 

This is the desired result in the case where a , /3  and 7 satisfy the conditions of 

Proposition 4.8. The remaining special cases, e.g., where one of a, fl and 7 is 

+ l ,  are left to the reader. 

5. S c h r S d i n g e r  m o d e l s  

We now return to the situation of sections 1-3 and assume that  W is a split e- 

Hermitian form with a fixed complete polarization W = X + Y, and compatible 

standard D-basis e l , . . . ,  en as in §1.2. We want to write down the operators for 

the Weil representation wv = w o ~v of G = U(W) for the standard SchrSdinger 

model [111, [81. 

Note that,  for the complete polarization W = X + Y, we have X "" V '~ (row 

vectors of length n). For any element 
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Rao defines a unitary operator r(a) on L2(X). It is given explicitly as follows: 

Let Ya = Y/ker('y) and let d#~ be a suitably normalized (cf. [8] ) Haar measure 

on Y~. Then for ~ E S(X) and x E X, 

r(a)~(x) = [ fa(x + y) ~(xa + y~) d#a(y), 
a 

where 

Ia(x + y) = ¢ (  (xa, + + 

In our ease, if we identify both X and 'g with V '~, as above, we have 

((xl, Yl), (x2, Y2)) = ~" t rDtr( (xl ,  Y2) -- e(yl, x2)), 

where ~ is as in (0.9). Thus we obtain, for 

g= d EG, 

f~v(9)(x + y) = ¢(~t~. trotr(xa, xb) + t~" trDtr(yc, xb) + ~ "  trDtr(ye, yd)). 

For ;3v is the function defined in Theorem 3.1, we set 

=~v(g)/v,~ ¢(~. trDtr(xa,  xb)+~.trDtr(yc, xb)+~.trDtr(yc, yd)) 

~(xa + yc) dttg(y), 

and, excluding the case 1+ with m odd, we obtain a smooth representation of G 

on S(V~). 
In the case 1+ with m odd, the operators wy(g) define a representation of 

the twofold cover Spn(F ) × #2 where the cocycle c°(gl, g2) is Rao's normalized 

cocycle, given in section 3 above. 

Finally, we note that  the image of the group H = U(V) under the embedding 

tw lies in the Levi factor of the parabolic subgroup of Sp(W) which stabilizes 

Y. Since Rao's cocycle for Sp(W) is trivial on this subgroup, there is a natural 

splitting 
U(V) , Mp(W) -~ Sp(W) × C 1 

h , (h, 1), 

and the resulting action of the group H = U(V) on S(V '~) in this model is just 

the natural linear action 

w(h)~o(x) = ~o(h-lx). 
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